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Abstract-Diffusion accompanied by instantaneous chemical reactions in a multicomponent drop is modeled. The 
developed model is then simulated for the case of absorption of one solute from a continuous phase into the drop, 
followed by fast reactions with two different reactants existing in the drop. The results of the model are obtained 
by using Galerkin's finite element method and represented by unsteady concentration profiles of all components 
in the drop, the reaction front positions, and the cumulative mass flux and the enhancement factor of the diffusing 
solute. The effects of the system parameters, such as diffusivities of the solute and the reactants, the relative amount 
of the reactants in the drop, and the interlacial concentration of the solute, on the calculated quantities are evaluated 
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INTRODUCTION 

Diffusion between drops or bubbles and surrounding fluid with 
an accompanying chemical reaction is important in a number of 
industrial gas-liquid and liquid-liqiaid contacting operations. The 
reaction may occur either in the continuous phase or in the dis- 
persed phase, depending on the nature of the particular system, 
Theoretical analyses of diffusion with a chemical reaction to or 
from drops have been reported by several workers [Ruchenstein 
et al., 1971; Dang and Ruchenstein, 1973; Ramachandran et al., 
1985; Kleninstreuer et al., 1985; Dutta et al., 1988]. 

In many situations of practical interest, however, diffusion to 
a drop is associated with an instantaneous chemical reaction. This 
phenomenon proceeds through a moving boundary mechanism. 
The reaction between a solute diffusing into the drop from the 
surrounding continuous phase and a second reactant species pre- 
sent in the drop occurs at a reaction front that progressively 
moves away from the surface of the drop toward its center. As 
a result, the reaction front separates the drop into two regions, 
each containing only the solute or the reactant. 

Despite its practical importance, the multicomponent system, 
which is common to general industrial processes, is not well un- 
derstood. In an earlier paper, Noh et al. [1995] developed a math- 
ematical model for multicomponent mass transfer accompanied 
by irreversible instantaneous chemical reactions with one reactant 
in a small drop. They simulated the model for the case where 
two solutes diffuse and react rapidly with a third reactant existing 
in the drop. The aim of the present paper is to develop a mathe- 
matical model to theoretically analyze the diffusion of one solute 
from the surrounding phase into a multicomponent drop accom- 
panied by irreversible rapid chemical reactions in the drop. The 
developed model is then simulated for absorption of one solute 
and instantaneous chemical reactions of the solute with two chem- 
ical reactants present in the drop. The results of the analysis 
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are reported in terms of unsteady concentration profile of each 
species in the drop, the location of reaction front, and the cumula- 
tive mass flux and the enhancement factor of the solute for the 
various values of the system parameters. 

MODEL DEVELOPMENT 

Let us consider a non-circulating drop that contains n different 
reaction species, A, B, C,-", N, and absorbs a solute, T, from 
the surrounding continuous phase. The initial concentrations of 
the reactants, C,,, are uniform in the drop. The bulk concentration 
of T in the continuous phase is constant and the corresponding 
equilibrium concentration at the drop surface is C~. Due to the 
independent reactions of T with the reactant% there are n chemi- 
cal reactions according to: 

T+yA A ~ products 
T + y~ B --~ products 

T+yN N --~ products (1) 

where y/s are the ratios of stoichiometric coefficient of i to T. 
If the reactions are so fast that the overall rate is controlled by 
diffusion in the drop and mass transfer resistance in the con- 
tinuous phase is negligible, the relevant governing equations in 
nondimensionless form are: 

For region I (0<0<1) 

o~c~_ ,9c~. 
dp ~ dz 

For region II (0<p<O) 

DAT d2C~ -- oC,~ 
dp z 01= 

D d~C~ : oC~ 
nr dO z d~ 
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D.x'~ o'C'~ - OC~ 
OP 2 Ov 

* - -  C ' l  
where Cr = pCr = p C'rl 

* - -  C4 
Ca=oC~=o C.. 

, C. 
C,~ = pC~-~ = pal~ C,~, 

C~ = pW," = ~. , -  C ,  

(2) 

tDv C,,, r Di 
~= R~, a, = ~ - , .  p= R-, and D, i -  D/ 

Here, C,'s and D/s are concentration and diffusivity of i, respec- 
tively; r is radius coordinate of the system measured from the 
drop center; R is drop radius; 0 = x / R  is the location of the mov- 
ing reaction front at any time ~; and x is the distance from the 
drop center to the location of the reaction front at any time t. 

The following initial and boundary conditions may be pre- 
scribed. 

At ~=0;  * * C~= C.~=aNp for 0 < p < l  Ci = O, C,~ = p, a.p,.--, 
At p = l ;  C~= I  for z>O 
At p=0;  Ca=Ce . . . . .  CN=0 for z>0 
At P=0;  Cr=CA=C.  . . . . .  C~.=0 for z>0 (3) 

The following compatibility condition relating the fluxes of T 
and the reactants in the drop at P = 0  should be satisfied: 

_ N r = N ~  +N/~ +..._~ NN 
y.~ y.~ yN 

that is, 

3C7 dC~ 
- = D ~ T ~  ~Y ~-~ + D.~ 

Op dO Op 

_ o o c ~  
+""  + Dmt~v (4) 

OP 

where B~- C~,, _ cCr_~ ~Y~C r, , ~ (k = A, B,'".N) 

No analytical method to solve the above set of equations exists, 
and a direct numerical approach becomes complicated because 
the reaction front position, 0, is not known in advance. Therefore, 
it is desired that the reaction front is immobilized through an 
appropriate coordinate transformation. Accordingly, if the follow- 
ing new variables are introduced, 

- P - r  for r  (5) o ~ - - 1 _  ~ 

~ - p  
~oll- for O - < p ~  (6) 

Eqs. (2) to (4) reduce to: 

1 d~C~+l -~o ,  dO oC-~ oC~- 
( 1 - 0 ) ~  O ~  i -0  d~ Oo~ O~ 

Dnr o2C~ 1-coz~ dr oC~ oC~ 
0 ~ Oo~t 0 dt Oo~u O~ 

Dsr 0~C~ l . - o ~  dO 0C~ OC~ 
C 0~o~ O d~ 0o~u O~ 

Dxr 
~2 

At 

At 
At 
At 

and 

0C~ 
0~o~ 

2 * * C* 0 C,~ 1-~ol/ dO 0CN_ 0 ,v 
0oJlt r d~: OtOH OZ 

e ~ = l - o ~ , ,  ~=0; Cr=0, Cs = a~(1 - ~ou),'", 
CN=Ct,~(1--Cou) for o)l and cou>0 

oJt = I; C~.= 1 for r>0  
cou=l; CA=CB . . . . .  C~.=0 for ~>0 
co1=~o.=0; Cr=CA=C~ . . . . .  C:~=0 for ~>0 

(7) 

(8) 

1 - r  0C~ oC~ 

ObNC* / 
+""  + [3,,~D~T ~ (9) 
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Eq. (7) with the corresponding boundary conditions, Eq. (8), 
and the compatibility condition, Eq. (9), is solved numerically 
using the usual Galerkin's formula applied over a fixed number 
of linear finite elements for the two regions, ~o, and o)H, in the 
drop, Each dimensionless time step requires an iterative techni- 
que because of nonlinear involvement of 0 in the governing equa- 
tions. The detailed computational steps are given in the earlier 
paper FNoh et al., 1995]. 

R E S U L T S  A N D  D I S C U S S I O N  

The developed model is simulated for the case of absorption 
of one solute, T, from a continuous phase into a two-component 
drop and irreversible instantaneous chemical reactions of the sol- 
ute with two reactants, A and B, existing in the drop according 
to the following equations: 

T+yAA --* products 
T + YBB --~ products (10) 

The computational results for the case are obtained using Galer- 
kin's finite element method and reported in terms of unsteady 
concentration profiles of all components in the drop, the locations 
of the reaction front, and the cumulative mass flux and the enhance- 
ment factor. The mass flux and the enhancement factor of the 
diffusing solute, T, may be calculated easily from the solution 
for concentration distribution as follows [Hines and Maddox, 
1985]: 

Q,=f: \ OP / ~ , ~ "  

- 

E :  (0c,_.) 
\ OP /.:Lphy, 

3Qr (12) 
l e_n2.2  r 

It may be noted that the numerical integration can not be extend- 
ed to z = 9  and hence evaluation of time integrals, Eqs. (11) and 
(12), may contain a small error. This error, however, could be 
reduced by choosing a sufficiently small length of integral for 

near ~ = 0. 
Discussed are the effects of the system parameters-namely, the 

initial concentration ratio of A to T weighed by the stoichiometric 
coefficient in the reactions ([3), the diffusivity ratio of B to A (Da~) 
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Fig. 4. Progress of reaction front (11). 

and of A to T (DAr) on the computational results. ~,~ is denoted 
by a single parameter, 13, because the ratios of stoichiometric coef- 
ficients of the two reactions are taken as unity for the simplicity 
of the calculation. 

From general physical considerations, it is seemed that the lo- 
cation of the reaction front will be determined by two parameters: 
the diffusion rates and the amounts of the solute and the reac- 
tants. Larger concentrations of A and B will retard the movement 
of the reaction front. The effect of higher diffusivities of A and 
B will be similar. These physical interpretations are confirmed 
very well by the computational results of the present study. 

The concentration profiles of all components in the drop are 
shown in Figs. 1 and 2 with different values of ~t, ~, DBa, and 
constant DAr as functions of time and radius. Fig. 1 indicates that 
when the diffusivities of all components are the same, T reacts 
with A and B simultaneously, regardless of the initial amount 
of A and B in the drop. In Fig. 2, it is shown that if B diffuses 

slower than A, the concentration of B remains almost constant 
before the reaction front, followed by a rapid approach to zero 
around the reaction front. This confirms that T mainly reacts with 
the faster diffusing A as the reaction proceeds, even though the 
same amount of A and B exists in the drop. 

Figs. 3 and 4 show the progress of the reaction front with con- 
stant value of a. As can be seen in Fig. 3, larger 13 at constant 
Dar results in the slower movement of the reaction front. For 
constant 13, as the diffusivity of A becomes larger, the initial move- 
ment of the reaction front becomes slower but advances so fast 
at later time (Fig. 4). Slower diffusing B compared to A has an 
accelerating effect on the movement of the reaction front at early 
time and an decelerating effect at later time. This decelerating 
effect becomes obvious at large values of 13 (Fig. 3) and DAr (Fig. 
4). This confirms that when D~.<I, most of A is consumed at 
initial time and T reacts only with the slow diffusing B at later 
time. However, for the slow diffusing A compared to T (DAr=0.1), 
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the movement of the reaction front becomes fast as DBA decreases 
(Fig. 4). 

The cumulative mass flux of T, obtained by integral of the con- 
centration profile of T, is shown in Figs. 5 and 6. Fig. 5 shows 
that as [~ with constant DAr increases, the amount of T absorbed 
increases as expected. The slower diffusing B causes slightly the 
larger amount of T absorbed at initial stage. Each curve appears 
to reach its own asymptotic value at final stage, being independent 
on D~A. Fig. 6 shows the effect of DAT with constant: [3. If the 
diffusivity of A becomes larger, a greater amount of T is absorbed 
at early time. For very slow movement of A compared to T (DAr = 

0.1), there is no significant effect of D~ on the amount of T absor- 
bed. At later time, all the cumulative mass flux curves must tend 
to the final limiting value. Obviously, the diffusivities of all compo- 
nents in the drop seem to have no effect on the limiting value. 

Fig. 7 shows the effect of ~ on the enhancement tactor of T 
with constant ~ and DAr. Again, larger 13 and the slower movement 

of B cause the larger enhancement factor of T at early stage. 
At final stage, the asymptotic value of the enhancement factor 
is reached, which is independent on DBa. An interesting phenom- 
enon is represented in Fig. 8, which shows the enhancement fac- 
tor of T at different DAr and constant [3. Here it is seen that 
for larger value of DAT, the enhancement factor shows a maximum, 
and then drops down to the limiting value. This is because most 
of A is consumed at early stage, followed by simple physical ab- 
sorption at later stage. For small value of DAr, the curve shows 
the constant enhancement factor for a while at early time. There- 
after, the value gradually increases and the limiting value is reach- 
ed asymptotically. The diffusivity ratio DAT = 1.0 demarcates the 
boundary between these two types of phenomena. The slower 
diffusing B compared to A causes the higher enhancement factor 
of T with larger DAr at early stage, but, as expected, does not 
affect the final asymptotic value. This is because at initial time, 
T mainly reacts with A which exits more and diffuses faster than 
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B. At later time when most of A is consumed, the less amount 
of T is absorbed and reacts with the slow moving B. For very 
slow moving A (DAr=0.1), this effect appears to be negligible. 
The effect of ct, the initial amount of B relative to A, is not discus- 
sed because it is similar to that of D~A. 

CONCLUSIONS 

Diffusion accompanied by irreversible instantaneous chemical 
reactions in a multicomponent drop was mathematically modeled 
and simulated for absorption of one solute and its reaction with 
two different reactants existing in the drop. In order to fix the 
reaction front, the radial coordinate system was transformed into 
a new one which contains the reaction front position. The develop- 
ed model was solved using Galerkin's linear finite element meth- 
od, and the calculated results were presented in terms of un- 
steady concentration profiles, the progress of the reaction front, 
and the cumulative mass flux and the enhancement factor of the 
solute with different system parameters. Parametric studies show- 
ed the influences of the diffusivity ratios and the relative amount 
of the reactants in the drop. The prediction of the model on the 
effects of those quantities is in agreement with the general physi- 
cal considerations; (1) as the diffusivities of the reactants in the 
drop increase, the solute is absorbed rapidly from the surrounding 
fluid -approaching the final asymptotic value which is independent 
on the diffusion rates of the solute and the reactants.; (2) with 
the larger amount of the reactants in the drop, the amount of 

the solute absorbed becomes larger. 

NOMENCLATURE 

A, B, N : reactants existing in a drop 

C~ :concentration of i 
C~ :dimensionless concentration of i 

:transformed concentration of i 
Cr, :concentration of T at drop surface 
C,o :initial concentration of i in a drop 
D0 :diffusivity ratio, DfDj 
Er :enhancement factor of T 
N, : mass flux of ' i  
QT :cumulative mass flux of T 
r : radius coordinate 
R : drop radius 
x :location of the reaction front 
T :diffusing solute from a surrounding phase to a drop 

Greek Let te rs  
: C~/CAo 

y, :ratio of stoichiometric coefficients of i to T 
p :dimensionless radial position, r/R 
z :dimensionless time, tDr/R 2 
0 :dimensionless position of reaction front, x/R 
~o~, coil : transformed coordinate variables 

REFERENCES 

Dang, V.I. and Ruchenstein, E., "High Reynolds Numbers Un- 
steady Convective Mass Transfer from Fluid Spheres ' ,  Int. ]. 
Heat Mass Trans., 16, 1371 (1973). 

Durra, B., Middya, U. and Ray, P., "Mass Transfer with Instanta- 

neous Chemical Reaction in a Rigid Drop',  AIChE J. 34. 694 
(1988). 

Hines, A. and Maddox, R., "Mass Transfer, Fundamentals and 
Applications', Prentice-Hall, New Jersey, 1985. 

Kleninstreuer, C., Ramachandran, S. and Altwicker, E., "Sulfur 
Dioxide-Absorption with Chemical Reaction in an Accelerating 
Stream of Drops", Chem. Eng. J., 30, 45 (1985). 

Noh, B. I., Yoon, T. K., Moon, B. H. and Kim, J. H., "Model Develop- 
ment for Multicompouent Mass Transfer with Rapid Chemical 
Reactions in a Small Drop", The Korean Jeurnal of Chemical 
Engineering, 12(1). 18 (1995). 

Ramachandran, S., Kleinstreuer, C. and Altwicker. R., "Coupled 
Two-Phase Mass Transfer to Spherical Drops-Trace Gas Absorp- 
tion and Oxidation by a Single Drop',  The Canadian Journal 
of Chemical Engineenng, 63, 911 (1985). 

Ruchenstein, E., Dang, V_ and Gill. W., "Mass Transfer with Chem- 
ical Reaction from Spherical One or Two Component Bubbles 
or Drops', Chem. Eng. Sci, 26, 647 (1971). 

A P P E N D I X : D E R I V A T I O N  OF T H E  GOVERNING 
EQUATIONS THROUGH THE COORDINATE 

T R A N S F O R M A T I O N  

1, Govern ing  Equations  
By introducing the following variables for the coordinate trans- 

formation, 

o)~= p -  O for 0 g  p-< 1 (5) 
1 - 0  

0 - P  (on- for 0-<Og0 (6) 
0 

we have 

aoJ1 _ 1 do~l _ (P-- 1) (A-l) 
0p ( t - 0 )  de ( I - O Y  

~a~l_ 1 de~  P (A-2) 
ap o 00 C 

1-1. For region I (O<p<l)  

o~c~_ 0c* (21 
OP 2 0~ 

Hence, Cr=f(oJl, z) and 0--fir).  Therefore, it follows that 

dC~= 0C~ d r +  oC~" dco, 
0t 0ol 

_ OC~ d~-I dC~ Oo~/ de dz 
dx dco* de dt 

By dividing both sides by dz and using Eqs. (5) and (A-I), we 
get 

dCr oC* ( p - l )  d ,  oC* 
d ~ - -  Ot ~ - ( 1 - ~  2 dr 0(o~ 

_ 0C* (1-cot) dO 0C~- 

The lefthand side of Eq. (2) reduces to 

gc~_ o ( o c : / - - - 1  o~c~ 
aP 2 aP \ OP / (1--0) 2 0 0)I2 

By substituting Eqs. (A-3) and (A-4) into Eq. (2), we get 

(A-3) 

(A-4) 
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1 o'C~ v(1-co,) dO aC~ _ aC~ 
(1-coY dco/ (1-0)  dr" dco/ Or" 

1-2. For region II (0<p<r 

D,r O~C'~' - d ~  (i=A. B,.-,N) 
dO 2 d~ 

Similarly, we have the following: 

Cr=f(cou. z) and O=f(r') 

dC = dC dz+ OC dot, 
dr' dco. 

dr" dtotl dO d~: 
dO dC~,+ p dO 0 r  

_ ~ +(1-co. )  dO d ~  
d'c O dx: alton 

Substituting Eqs. (A-5) and (A-6) into Eq. (2) yields 

D,r d2C~, (I-c0t,)dO d o _  d ~  
0 .2 dco;] O dr. dcoll dr, 

2. Initial and Boundary Conditions 

(7) 

(2) 

(A-5) 

(A-6) 

(7) 

Accordingly, Eq. (3) reduces to 

At ~=0; C~=0. C~=l-coe, C~=an(1-con),'", 
O 

CN=ct~(1--o~a) for cot and cols>0 
At co~-- 1; C* = 1 for z>0 

C * - C * -  =C*,=0 for z>0 At co/1 =1; .4- z . . . .  
At cot=co//=0; Cr=C~=CB . . . . .  C.~=0 for ~>0 (8) 

3. Compatibility Condition 

0C~ = DATflA 0C7~ + DRr138 0C~ 
dO dP dO 

+"" + Dmr oC,* (4) 
dO 

Here, the partial derivatives of both sides reduce to 

oCt. _ 1 oC; (A-7) 
dO (1- r  dcoI 

d ~  1 d ~  (i=A, B,'"N) (A-8) 
dP 0 dcoH 

Rearranging Eq. (4) using Eqs. (A-7) and (A-8) results in 

0C~ [ 1 -  0 ~o  r~ oC: + 13eDer dC~ 
d c o l - \  r ][~'A~'ATdcoI+ dO~Z---~ 

+"" + I 3 N D ~ t  (9) 
dcou " 
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